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2Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

3MIT Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02420, USA
4Institute of Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(Dated: January 11, 2016)

We propose and demonstrate a new read-out technique for a superconducting qubit by dispersively
coupling it to a Josephson parametric oscillator. We employ a tunable quarter-wavelength super-
conducting resonator and modulate its resonant frequency at twice its value with an amplitude sur-
passing the threshold for parametric instability. We map the qubit states onto two distinct states of
classical parametric oscillation: one oscillating state, with 185±15 photons in the resonator, and one
with zero oscillation amplitude. This high contrast obviates a following quantum-limited amplifier.
We demonstrate proof-of-principle, single-shot readout performance, and present an error budget
indicating that this method can surpass the fidelity threshold required for quantum computing.
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The readout scheme for quantum bits of informa-
tion (qubits) constitutes one essential component of a
quantum-information processor [1]. During the course of
a quantum algorithm, qubit-state errors need to be cor-
rected; in many implementations this is done by quan-
tum error correction, where each operation is based on
the outcomes of stabilizer measurements that indicate
the qubit errors. The stabilizers must therefore be de-
termined in a “single shot” – without averaging of the
output signals of repeated measurements on identically
prepared qubits – with fidelity exceeding approximately
99 % [3].

The commonly used measurement scheme for a super-
conducting qubit coupled to a linear microwave resonator
does not, by itself, offer single-shot measurement per-
formance. The qubit imparts a state-dependent (“dis-
persive”) frequency shift on the resonator, which can
be determined by applying a probe signal and measur-
ing the reflected or transmitted signal, although only for
weak probing, rendering an inadequate signal-to-noise ra-
tio (SNR) [4, 5].

Researchers have addressed the problem of insufficient
SNR in essentially two ways. One approach is to feed
the weak output signal into a following, parametric linear
amplifier that adds only the minimum amount of noise
allowed by quantum mechanics [6–9]. Another approach
is to insert a nonlinear element into the system and ap-
ply a strong drive tone, such that the resonator enters
a bistable regime, hence enhancing the detection con-
trast [10–14].

In this paper we propose and demonstrate a simplified
readout technique in which a superconducting qubit is
directly integrated into a Josephson parametric oscilla-
tor (JPO). We map the qubit states onto the ground and
excited states of the oscillator, and demonstrate proof-
of-concept, single-shot readout performance (SNR > 1).
We obtain 81.5 % qubit-state discrimination for a read-

out time, τ = 600 ns; however, from the error analysis
we infer a read-out fidelity of 98.7 ± 1.2%, taking into
account known and reparable errors due to qubit initial-
isation and decoherence (17.2 ± 1.2 %). A realistically
achievable qubit-relaxation time, T1 = 50µs, and read-
out time, τ = 400 ns, would reduce these errors from
17.2 % to 0.5 %. The remaining errors, which are due to
switching events in the oscillator (1.2 ± 0.3 %), can be
eliminated by improving the data-aquisition protocol -
see Discussion and Supplementary Information. These
qubit and detection improvements would bring the read-
out fidelity to ≈ 99.5 %.

Our readout scheme relies on parametric pumping of
a frequency-tunable resonator by modulation of its in-
ductance. The pumping amplitude exceeds the thresh-
old for parametric instability, the point above which the
resonator oscillates spontaneously, even in the absence
of an input probe signal. This instability threshold is
controlled by the state of the qubit, whose ground and
excited states correspond to the nonoscillating and oscil-
lating states of the resonator, respectively. In our mea-
surement, the oscillating state produces a steady-state
resonator field corresponding to 185± 15 photons, whose
output we can clearly distinguish from the nonoscillating
state when followed by a commercial semiconductor am-
plifier, eliminating the need for a quantum-limited ampli-
fier. Conceptually, this method can yield arbitrarily large
contrast due to the parametric instability, and moreover,
only requires a pump but no input signal.

This readout scheme is well aligned with scalable,
multi-qubit implementations. Parametric oscillators can
be readily frequency-multiplexed [15] and allow for a sim-
plified experimental setup (compared to conventional mi-
crowave reflectometry) without a separate input port to
the resonator or a following parametric amplifier, and
consequently also without additional bulky microwave
circulators that would normally route the input and
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Figure 1. Experimental setup and readout mechanism. (a)
Schematic of the cryogenic microwave reflectometry setup.
The transmon qubit (red) is capacitively coupled to the copla-
nar waveguide parametric resonator (blue). The input and
output flows of photons are denoted |B|2 and |C|2, respec-
tively, whereas the number of photons in the resonator is de-
noted |A|2. The output signal is acquired using heterodyne
detection of the amplified microwave signal. The components
drawn in lighter gray are those that are rendered unneces-
sary by the JPO readout method, thereby offering a simpli-
fied experimental setup (see text). (b) Parametric-oscillation
regions for the qubit ground state |0〉 (solid blue line) and
excited state |1〉 (dashed blue line), respectively. These blue
lines represent the instability boundaries, ε = εth, where the
number of steady-state solutions to Eq. (1) changes — see Eq.
(10) in Methods. The two panels on the right are measured
[I,Q]-quadrature voltage histograms of the device output for
the pump bias point indicated by the circles, revealing two dif-
ferent oscillator states: I. Outside of the region of parametric
oscillations, the resonator is “quiet” (|A|2 = 0). II. Within
the region, the resonator has two oscillating states (|A|2 > 0),
with a phase difference of π radians — see further Fig. 5.

parametric-pumping tones. It is also possible to manipu-
late the qubit via the flux-pumping line only, which fur-
ther reduces the number of cables and interconnects.

RESULTS

The Josephson parametric oscillator (JPO). Our
device consists of a quarter-wavelength (λ/4), super-
conducting coplanar waveguide resonator, shorted to
ground in one end via two parallel Josephson tunnel
junctions (JJs) — see Fig. 1(a). The JJs form a super-
conducting quantum interference device (SQUID), which
acts as a variable Josephson inductance, LJ(Φ, I(φ)) =

Φ0/
[
2π cos(πΦ/Φ0)

√
I20 − I2(φ)

]
, where I0 is the criti-

cal current and Φ0 is the flux quantum. This inductance
can be controlled by the external magnetic flux through
the SQUID loop, Φ(t) = Φdc + Φac(t), and by the super-
conducting phase difference across the JJs, φ(t), via its
current–phase relation, I(t) = I0 sinφ(t).

Time-varying modulations of Φ and φ – “paramet-
ric pumping” – affect the resonator dynamics, albeit in
rather different ways; moreover, the Josephson induc-
tance is indeed both parametric and nonlinear. We ex-
plain these differences in the Discussion section below.
The resonant frequency of the JPO is parametrically
modulated via the magnetic flux, Φ(t), which can lead
to frequency mixing as well as parametric effects such as
noiseless amplification of a signal, frequency conversion,
and instabilities [7, 16–20].

The state of the JPO has a rich dependence on several
parameters, some of which was studied recently, both
theoretically [21, 22] and experimentally [8, 18, 20]. The
equation of motion for the intra-resonator electric field
amplitude, A, can be written as

iȦ+ εA∗ + δA+ α |A|2A+ iΓA =
√

2Γ0B(t). (1)

Here ε is proportional to the externally applied pump
amplitude, Φac, which modulates the resonant frequency
parametrically at close to twice its value, ωp ≈ 2ωr
(degenerate pumping), and δ = ωp/2 − ωr is the
resonator’s detuning from half of the pump frequency.
The field amplitude, A, and its complex conjugate, A∗,
are slow variables in a frame rotating at ωp/2, and |A|2
is the equivalent number of photons in the resonator.
The Duffing parameter, α, associated with a cubic
field nonlinearity, arises from the nonlinear Josephson
inductance. The linear damping rate has two compo-
nents, Γ = Γ0 + ΓR, where Γ0/2π = 1.02 MHz is the
external damping rate, associated with the photon decay
through the coupling capacitor, and ΓR/2π = 0.30 MHz
is the internal loss rate. The equation’s right-hand side
represents the input probe signal, such that |B(t)|2 has
units of photons per second. The output flow of photons
per second, |C(t)|2, is given by C(t) = B(t)− i

√
2Γ0A.

For low pumping amplitude, below the parametric
instability threshold, ε < εth, this device works as a
phase-sensitive parametric amplifier (JPA) for an input
B(t) at signal frequency ωs = ωp/2 [7, 16–18, 23]. Note,
however, that we keep B(t) = 0 in the measurements
reported here. For a pumping amplitude exceeding the
threshold, ε > εth, spontaneous parametric oscillations
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Figure 2. Combined frequency spectrum obtained from qubit
spectroscopy of the transmon qubit (in red) and through stan-
dard reflectometry of the resonator (in blue). The solid red
and grey lines are fits. The dashed grey line, at resonator
flux bias F = 0.185π, indicates the bias point at which we
later demonstrate the readout method. Inset: Vacuum-Rabi
splitting around the flux-bias point where the transmon fre-
quency crosses that of the resonator. The minimum frequency
splitting yields a qubit-resonator coupling g01/2π = 46 MHz.

set in — see Fig. 1(b) and Eq. (10) in Methods. The
resonator field builds up exponentially in time, even in
the absence of an input probe signal until it becomes
limited by the Duffing and pump-induced nonlinearities
and reaches a steady state [18, 20].

We connected a transmon qubit capacitively to the
resonator [24] — see Fig. 1(a). The state of the JPO
(oscillating or nonoscillating) can then be controlled by
the qubit-state-dependent, dispersive frequency shift,
χ, which the qubit exerts on the resonator [25, 26].
When the JPO is being pumped above the threshold for
parametric oscillation, with amplitude ε and frequency
detuning δ, then a change of qubit state effectively pulls
the resonator to a different value of the detuning, outside
of the region of parametric oscillations — see Fig. 1(b).
We denote the qubit-state dependent detunings by
δ|0〉 = δ − χ and δ|1〉 = δ + χ. The resulting mapping
of the qubit state onto the average number of photons
in the resonator provides us with a novel qubit-state
readout mechanism, which we exploit in this work.

Characterisation of qubit and JPO. The de-
vice and cryogenic experimental setup are depicted in
Fig. 1(a). The sample is thermally anchored to the
mixing chamber of a dilution refrigerator with a base
temperature of 10 mK. The parametric λ/4 resonator
(in blue) is capacitively coupled to the transmission
line (Cc = 11.9 fF), yielding an external quality factor
Qext = ωr/2Γ0 = 2 555. A transmon qubit (in red) is
also coupled near this end of the resonator.

The resonator output signal is amplified using a 4–8
GHz high-electron-mobility transistor amplifier, with a
noise temperature TN = 2.2 K, followed by two room-
temperature amplifiers. We detect the outgoing signal

using heterodyne mixing. The signal is first downcon-
verted to a frequency (ωRF − ωLO) /2π = 187.5 MHz; then
the [I,Q]-quadrature voltages are sampled at 250 MS/s,
before they are digitally downsampled at a rate of
20 MS/s.

We first characterise the transmon spectroscopically
— see Fig. 2 — from which we extract the Josephson
and charging energies, EJ/2π = 9.82 GHz and EC/2π
= 453 MHz, respectively. From the vacuum-Rabi split-
ting, we extract a qubit−resonator coupling rate g01/2π
= 46 MHz — see inset in Fig. 2.

Next, we fit the frequency tuning curve of the resonator
(with the qubit in the |0〉 -state) to the relation

ω|0〉r (F ) = ωr(F )− g201/∆(F ), (2)

where F = πΦdc/Φ0 denotes the static flux bias, nor-
malised to the magnetic flux quantum. The effective dis-
persive shift due to the qubit is

χ(F ) = − g201
∆(F )

(
EC

∆(F )− EC

)
, (3)

which, in turn, depends on the qubit–resonator detun-
ing, ∆(F ) = ωa(F ′) − ωr(F ), with F ′ = F/8.88 + 0.58
representing the effective magnetic flux of the transmon.
Moreover, the qubit and resonator frequency spectra are
well approximated by [24, 27]

ωa(F ′) ≈
√

8EJ |cos(F ′)|EC − EC , (4)

ωr(F ) ≈
ωλ/4

1 + γ0/ |cos(F )|
, (5)

where ωλ/4/2π = 5.55 GHz is the bare reso-
nant frequency (in absence of the SQUID), and
γ0 = LJ(F = 0)/Lr = 5.3 ± 0.1 % is the inductive
participation ratio between the SQUID (at zero flux)
and the resonator. The solid grey and red lines in Fig. 2
are fits to Eqs. (2) and (4), respectively.

Single-shot qubit readout. We now demonstrate
our method for reading out the qubit with the JPO.
We choose a static-flux bias point F = 0.185π for
the resonator SQUID, corresponding to a resonant

frequency ω
|0〉
r /2π = 5.218 GHz and qubit transition

frequency ωa/2π = 4.885 GHz — see dashed grey line in
Fig. 1(a). Consequently, the qubit–resonator detuning
is ∆/2π = −334 MHz, and the effective dispersive shift
is 2χ/2π = −7.258 MHz. We measured a Purcell-limited
qubit relaxation time, T1 = 4.24 ± 0.21µs, and Ramsey
free-induction decay time T ∗2 = 1.66 ± 0.32µs — see
Methods, Supplementary Fig. 5, and Table 3.

To operate the parametric oscillator as a high-fidelity
qubit-readout device, we must be able to map the states
of the qubit onto different states of the oscillator, which
we must then clearly distinguish. We encode the qubit
ground state |0〉 in the “quiet” state (the empty res-
onator) and the excited state |1〉 in the “populated” state
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Figure 3. Qubit readout by the Josephson parametric oscil-
lator. (a) Pulse sequence: The qubit π-pulse (in red), with
Gaussian edges and a plateau of duration τπ = 52 ns, is fol-
lowed by a short delay, τd = 20 ns, before the pump is turned
on at time t = 0. (b) The solid blue and red traces show
the inferred photon number, |A|2, in the resonator, with and
without a prior π-pulse on the qubit, respectively. Note that
the resonator latches, once it has entered into the oscillat-
ing state, and remains there even if the qubit relaxes. The
traces are the result of 104 averages of the raw data; the in-
set shows a single instance of the raw data on the same time
axis as the main plot. Prior to the sampling window of width
τs = 300 ns, a delay τr = 300 ns is added to avoid recording
the transient oscillator response. The hatched region around
the average photon number represents our uncertainty, origi-
nating from the amplifier gain calibration — see Methods and
Supplementary Fig. 3.

of the resonator. Figure 3(a) shows the pulse sequence
for qubit manipulation and readout, and Fig. 3(b) shows
the resulting output from the JPO, operated with the
pump settings δ|0〉/Γ = −5.34, ε/Γ = 3.56.

The populated oscillator in Fig. 3(b) contains 185±15
photons. We obtained this estimate from a comparison
between the probe-amplitude dependence of the resonant
frequency and the expected photon-number dependence
of the Duffing shift — see Methods and Supplementary
Fig. 3. This number of photons should be compared to
|A|2 = 200±3 photons, which is the solution to Eq. (1)

in the steady state (Ȧ = 0).
In order to achieve such clear qubit-state discrimi-

nation as in Fig. 3(b), we needed to make a judicious
choice of flux-bias point, F , to mitigate the effects of
two nonlinear shifts of the resonant frequency [20]. The
Duffing shift dominates when F → ±π/2, whereas a

pump-induced frequency shift dominates when F → 0.
These shifts can move the resonator away from the
proper pump condition, thereby effectively restricting
the output power — see Methods and Supplementary
Fig. 2.

Moreover, the qubit−resonator detuning should be
in the dispersive regime (∆ � g01), in which the qubit
state controls the resonant frequency of the resonator.
Yet it must yield a sufficiently large dispersive shift,
χ > Γ (Eq. 3), to produce clearly distinguishable output
levels, corresponding to the |0〉 and |1〉 states. For our
chosen flux-bias point, we identify the optimal pump
settings by mapping out the parametric oscillation
region as a function of pump frequency and amplitude
— see Fig. 4(a).

An interesting feature is present within the left half
of Fig. 4(a) (where the populated resonator encodes
|1〉). Here, when the qubit is initially in the |1〉 state,
the resonator latches into its oscillating state for as long
as the pump is kept on, and does not transition into
its quiet state when the qubit relaxes, as one might
have expected. This latching is shown by the blue
trace in Fig. 3(b). We attribute it to the existence of a
tri-stable oscillation state [18, 22], associated with red
detuning of the above-threshold region for the |0〉 state.
When the qubit relaxes, there occurs an instantaneous
shift of the pseudopotential for the amplitude A, from
bi-stable (with two π-shifted, finite-amplitude states; see
Fig. 1(b), panel II.) to tri-stable (with one additional
zero-amplitude state). The field’s initial condition at
the time of this shift, A 6= 0, causes the resonator
to maintain its oscillating state. A separate study
of this latching feature will be reported elsewhere.

We evaluate the obtainable state discrimination by
collecting quadrature-voltage histograms at every point
within the two regions of parametric oscillations in
the [δ, ε]-plane — see Fig. 4(b). We choose the pump
operation point δ|0〉/Γ = −5.34, ε/Γ = 3.56, indicated
by the black circle, and show the characterization in
detail in Fig. 5. In this point, the state discrimination
has reached a plateau around 81.5%. Each histogram in
Fig. 5(a–b) contains in-phase (VI) and quadrature (VQ)
voltage measurements from 105 readout cycles, with
each measurement being the mean quadrature voltage
within the sampling time τs (blue window in Fig. 3).
We project each of the 2D-histograms onto its real axis,
and thus construct 1D-histograms of the VI component
— see Fig. 5(c). We can then extract a signal-to-noise
ratio, SNR = |µ|1〉 − µ|0〉|/(σ|1〉 + σ|0〉) = 3.39, where µ
and σ denote the mean value and standard deviation,
respectively, of the Gaussians used to fit the histograms.
The peak separation of the histograms gives a confidence
level of 99.998% for the readout fidelity. The peak
appearing in the center of the blue trace arises mainly
from qubit relaxation prior to and during the readout.
We analyze this and other contributions in the next
section, as well as in Supplementary Note 1 and Fig. 4.

To extract the measurement fidelity from the his-
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point used throughout the rest of the analysis and in Fig. 3(b). The state discrimination in this point is 81.5%.

tograms, we plot the cumulative distribution function
of each of the two traces in Fig. 5(c), by summing up
the histogram counts symmetrically from the center and
outward, using a voltage threshold, Vth. From these
sums, we obtain the S-curves of the probability to find
the qubit in its ground state as a function of the voltage
threshold value — see Fig. 5(d). We define the fidelity of
the measurement as the maximum separation between
the two S-curves.

DISCUSSION

To evaluate the fidelity of the readout itself, as com-
pared to the fidelity loss associated with qubit errors, we
will now make an error budget. From the histograms in
Fig. 5(c), we can account for 81.5 % of the population,
thus missing 18.5 %. To understand the remaining con-
tributions, we run a Monte Carlo simulation of the qubit
population, consisting of the same number of 105 readout
cycles as in the measured histograms. The simulation re-
sults are binned in the same way as the measurements,
using the Gaussian fits as boundaries, and taking into
account the following statistics: (i) qubit relaxation and
preparation errors, (ii) thermal population of the qubit,
(iii) spurious switching events by π radians of the oscil-
lator phase during readout (yielding a reduced sampled
voltage), and (iv) peak-separation error due to the lim-
ited signal-to-noise ratio.

We find that the main contribution to the loss of fi-
delity is due to qubit relaxation prior to and during

the readout. From the measured relaxation time, T1 =
4.24 ± 0.21µs, we obtain a fidelity loss of 11.6 ± 0.5 %.
However, this error can be reduced substantially (to
< 0.5 %) by introducing a Purcell filter [28–30] at the
output of the JPO, thus decreasing the relaxation into
the 50-Ω transmission line. Such a filter would allow us
to increase the resonator damping rate, Γ0, thus reduc-
ing the readout time, without compromising T1. This is
shown in Supplementary Note 2 and Table 3. Note, how-
ever, that an increased resonator damping rate yields an
increased width of the parametric oscillation region: con-
sequently, the qubit–resonator coupling, g01, needs to be
increased accordingly to result in a sufficiently large dis-
persive frequency shift.

From the simulation, we further attribute 4.5 ± 0.3 %
to qubit preparation errors. Another 1.1±0.4 % can be
explained from thermal population of the qubit; the ef-
fective qubit temperature is Tq = 45± 3 mK. By adding
these fidelity loss contributions due to the qubit to the
measured state discrimination, we can account for 81.5 %
+ 11.6±0.5 % + 4.5±0.3 % + 1.1±0.4 % = 98.7±1.2 %.

There are also errors introduced by the parametric
oscillator itself: Switchings between the π-shifted oscil-
lating states reduce the overall measured voltage. We
performed a separate control measurement that yielded
2.4 ± 0.5 % switching probability, which translates into
a maximal fidelity loss of half of that, 1.2 ± 0.25 %.
The switching rate of the parametric oscillator depends
on many parameters, including damping rates and bias
points; this error can therefore, with careful engineering,
be decreased even further. We could, however, eliminate
the effect of phase-switching events by using a rectifying
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oscillator output, collected after digital sampling. The pump
bias point was δ|0〉/Γ = −5.34, ε/Γ = 3.56 — see Fig. 4(b). In
panel (a), the qubit was in its ground state; in (b), a π pulse
was applied prior to the readout pulse. (c) 1D-histograms
of the in-phase voltage component, VI , from the quadrature
histograms in (a) and (b). The black and white solid lines are
Gaussian fits, from which we extracted a signal-to-noise ratio
of 3.39. (d) Cumulative distribution functions, corresponding
to the |0〉 and |1〉 states, obtained by sweeping a threshold
voltage, Vth, from the center of the two histograms (VI = 0).
The maximum separation between the two S-curves yields a
state discrimination of 81.5 %.

detection scheme, e.g., a diode or a field-programmable
gate array (FPGA), tracking the absolute value of the
output field instead of its amplitude.

The last and smallest contribution to the fidelity loss
is the peak separation error, which accounts for the in-
trinsic overlap between the histograms. However, this
contribution is < 0.002% for our SNR of 3.39, and can
therefore be neglected. For details on the error budget
analysis, see Supplementary Note 1 and Fig. 4.

By combining the above-mentioned improvements (re-
duced qubit relaxation rate, optimised qubit manipula-
tions and cooling, enhanced resonator output coupling,
and rectifying data acquisition), the read-out fidelity
could realistically reach ≈ 99.5 %, limited only by the
qubit relaxation.

Finally, we demonstrate that the relaxation time of
our qubit is not measurably afflicted by the pump – see
Methods and Supplementary Fig. 5. Our measurement
scheme is, in principle, quantum nondemolition (QND),
see Supplementary Note 3; however, a proper assessment
of the back-action would require us to quantify to what

extent a second, immediately following projective mea-
surement yields the same result as the first. Such an
experiment is outside the scope of this work.

Table I puts our results in the context of previous work
on parametric and nonlinear Josephson amplification and
detection circuits.

A flux-pumped, parametric phase-locked oscillator
(PPLO) was used as a following amplifier, also enabling
sensitive qubit readout [8]. In our work, the qubit was
directly coupled to the JPO, which simplifies the experi-
mental setup by reducing the number of microwave com-
ponents needed. Also, with a pumping amplitude be-
low the parametric instability threshold, the flux-pumped
JPA has been used to read out one qubit [7], as well as
multiple qubits coupled to the same bus resonator [29].

There is another way of operating our device: instead
of pumping the flux at ωp ≈ 2ωr, we can apply an alter-
nating pump current (ε=0, B(t) 6=0), now at a frequency
close to resonance, ωp ≈ ωr, and thereby directly modu-
late the phase difference, φ. Both methods can provide
linear parametric gain upon reflection of a detuned signal
(ωs 6= ωp/2 and ωs 6= ωp, respectively). The flux-pumped
JPA has a very wide frequency separation between pump
tone and signal, because ωs ≈ ωr ≈ ωp/2, which is a
practical advantage since it makes the resonator’s entire
instantaneous bandwidth available for amplification with
no need to suppress or filter out the pump tone. More-
over, the λ/4 resonator has no mode in the vicinity of ωp
that the pump might otherwise populate.

We emphasize that there are indeed two different phys-
ical mechanisms in play, since flux and current pump-
ing address orthogonal variables in the sense that Φ =
(ϕ1 − ϕ2)Φ0/2π and φ = (ϕ1 + ϕ2)/2, where ϕ1 and
ϕ2 denote the gauge-invariant phase differences across
the two parallel JJs. This distinction is also evident in
Eq. (1). The parametric flux-pumping term, εA∗, mod-
ulates the resonant frequency; it couples the resonator
field amplitude and its complex conjugate, which can
provide quadrature squeezing of an input signal and en-
ables phase-sensitive parametric amplification; and for
stronger modulation there is a parametric instability
threshold into the JPO regime – see Fig. 1(b).

Current pumping by an input B(t), on the other hand,
corresponds to an external force which directly con-
tributes to the intra-resonator field A and drives its non-
linear term α|A|2. For zero detuning, ωs = ωp, this is the
driven Duffing oscillator which has no gain (it offers no
phase-sensitive amplification); for stronger driving there
occurs a dynamical bifurcation but no internal instability
or parametric oscillations.

Current-pumping with a moderate amplitude is used
for linear amplification with the JPA [31, 32], which
enabled, e.g., the observation of quantum jumps in a
qubit [6]. Current modulation is also used in the latching
detection scheme of the Josephson bifurcation amplifier
(JBA) [10, 11, 15, 33, 34]. There, a higher-amplitude
input strongly drives the Duffing nonlinearity near its bi-
furcation point; the two qubit states can then be mapped
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onto two different resonator output field amplitudes. The
JBA was used for quantum non-demolition measurement
of a qubit, and in a lumped-element resonator [12], in
which a qubit-state sensitive autoresonance was observed
in response to a frequency-chirped current drive. Yet an-
other method is to couple the qubit to a linear resonator,
which inherits a cross-Kerr nonlinearity from the qubit;
current pumping of the resonator can then yield a strong
output signal that depends on the qubit state [13, 14].

In conclusion, we have introduced a single-shot read-

Device ε Bs Bp # modes Ref.

JPO(∗) > εth 0 0 1 This work
JPA . εth 6= 0 0 1 [7]
JPA . εth 6= 0 0 multimode [35]
PPLO > εth 6= 0 6= 0 1 [8]
JPA 0 6= 0 6= 0 1 [6]

JBA(∗) 0 0 6= 0 1 [11]
JPC 0 6= 0 6= 0 2 [9]

TABLE I. Overview of different modes of operation for the
various Josephson amplification and detection schemes. The
variables refer to Eq. (1), where ε denotes the flux-pumping
amplitude (at ωp ≈ 2ωr), and Bs and Bp denote alternating-
current signal and pump amplitudes, respectively (at ωp ≈
ωr). The two readout methods marked with an asterisk (∗)
have the qubit directly integrated with the detector, whereas
the other devices are used as following amplifiers.

out technique for superconducting qubits − the Joseph-
son parametric oscillator (JPO) readout. We demon-
strated proof-of-principle operation, obtaining a bare
state discrimination of 81.5 %. After correcting for known
and reparable errors, this translates into an inferred read-
out fidelity of 98.7 ± 1.2 %, which by implementing a
rectifying detection scheme can be further increased by
1.2 ± 0.3 %. With foreseeable improvements and opti-
mization, this device would be an attractive candidate
for implementing multi-qubit readout in the context of
scalable error correction schemes. This fidelity and the
600 ns readout time are both amenable to optimization.

Our system integrates a parametric readout mecha-
nism into the resonator to which the qubit is coupled,
substantially reducing the number of components needed
to perform single-shot readout in a circuit quantum elec-
trodynamics architecture. Advantages offered by this
readout technique include the potential for multiplex-
ing and scalability with no need for signal-probe inputs,
additional microwave circulators, or separate parametric
amplifiers. As opposed to other integrated readout de-
vices, our pump frequency is far outside of the resonator
band and can thus easily be spectrally separated from
other transition frequencies in the system.
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METHODS

Device fabrication. We fabricated our device on
sapphire, using niobium for the waveguides and the
transmon paddles, and shadow-evaporated aluminum for
the Josephson junctions. To reduce the surface rough-
ness prior to processing, the 2” c-plane sapphire wafer
was pre-annealed at 1100◦C for 10 h in an atmosphere of
N2:O2, 4:1, ramping the temperature by 5◦C/min. The
annealed wafer was then sputtered with 80 nm of Nb
in a near-UHV magnetron sputter. The first patterning
of the sample consists of a photolithography step to
define alignment marks and bond pads, deposited using
electron beam evaporation of 3 nm Ti and 80 nm Au.
Next, the resonator, the transmon islands, and the
pump line were defined in the Nb layer using a standard
e-beam lithography process at 100 keV, and etched using
inductively coupled plasma reactive ion etching (ICP
RIE) in NF3-gas.

The Al/AlOx/Al Josephson junctions forming the
SQUIDs, used to terminate the resonator and for
connecting the transmon islands, were then defined in a
second e-beam step. After exposure, the 2”-wafer was
diced into separate chips, using the exposed e-beam
resist as a protective resist. Prior to the first evaporation
step, the surfaces of the Nb films where cleaned using
in-situ Ar-ion milling inside of the Plassys evaporator.
However, due to the substantially different regimes of
critical currents, I0, required for the Josephson junction
of the transmons and the parametric resonator, two
sequential evaporations and oxidations were performed
within the same vacuum cycle by rotating a planetary
aperture mounted inside the evaporator load-lock,
effectively shielding one half of the sample at the time.
Finally, a post-deposition ashing step was done to clean
the surfaces from organic residues.

Finding the parametric oscillation threshold. It
is hard to experimentally find the parametric oscillation
threshold with good precision, when only considering
the parametric oscillation region, Fig. 4(a), whose
observed shape gets smeared by the amplified vacuum
noise. In this section we present an alternative method
using a weak probe signal: we probe the parametrically
amplified response as we sweep the pump amplitude
across the instability threshold.

We apply a probe signal on resonance, ωs = ω
|0〉
r ,

while applying a detuned pump signal, such that
(ωp − 2ωs)/2π = 100 kHz. The signal then undergoes
degenerate, phase-preserving parametric amplification
(red trace in Supplementary Fig. 1), while the para-
metric oscillations are cancelled out since we measure
the average amplitude of the field. The parametric
amplification has maximum gain just at the thresh-
old. We plot the magnitude of the reflected signal
as a function of the pump power (at the generator),
yielding an oscillation threshold Pth = −10.8 dBm, as
indicated by the dashed red line. As a comparison,

we measure the output power of parametric oscillation
(PO), for ωp−2ωr = 0 and B(t) = 0 — see the blue trace.

Limits of the parametric oscillation amplitude.
As briefly discussed in the main text, there are two non-
linear effects that move the resonator away from its pump
condition, by means of their associated frequency shifts
[20],

∆ω = −α|A|2 − βΓ(ε/Γ)2. (6)

The Duffing shift dominates near flux bias F = ±π/2;
the Duffing parameter is approximated as

α(F ) ≈
π2ωλ/4Z0

RK

(
γ0

cos(F )

)3

= α0

(
γ0

cos(F )

)3

, (7)

where Z0 = 50 Ω is the resonator’s characteristic
impedance and RK = h/e2 is the quantum resistance.

The pump-induced frequency shift dominates near F =
0; it is approximated as

β(F ) ≈ Γ

ωλ/4γ0

cos3(F )

sin2(F )
= β0

cos3(F )

sin2(F )
. (8)

The resonator’s frequency tuning vs. F , Eq. (5) in the
main text, is shown in Supplementary Fig. 2(a), for the
parameters of our device, and Eqs. (7) and (8) are plotted
in Supplementary Fig. 2(b). This figure illustrates that it
is essential to bias the system far enough away from the
limiting points, F = 0 or π/2, such that neither frequency
shift pulls the resonator too far from its pump condition,
thereby severely limiting the attainable output power.

The steady state solution of Eq. (1) in the main text
yields an analytic expression for the expected number of
photons within the region of parametric oscillations,

|A|2 =
Γ

α

(√( ε
Γ

)2
− 1− δ

Γ

)
, (9)

which, for our analyzed bias point, amounts to 200±3
photons in the resonator. From this number, we ob-
tain a Duffing shift −α|A|2/2π ≈ −5.4 ± 0.3 MHz (for
α/2π = 27 ± 1.5 kHz per photon) and a pump-induced
frequency shift −βΓ(ε/Γ)2/2π ≈ −0.64 MHz (for β =
(7.5± 0.1)× 10−3).

The parameter β has the effect of skewing the para-
metric oscillation region, yielding an expression for the
thresholds plotted in Fig. 1(b),

ε

Γ
=

1√
2β

√√√√1− 2β
δ

Γ
±

√
1− 4β

(
β +

δ

Γ

)
. (10)

Calibration of attenuation and gain via the
Duffing non-linearity. In this section, we present how
we calibrated the gain of the amplifier chain, using the
photon-number-dependent frequency shift of the Duffing
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oscillator, −α|A|2, which we recall from the previous sec-
tion. The frequency of the resonator as a function of
input probe power takes the following form,

ωr(Ps) = ωr(0)− 2αΓ0

Γ2

10(Ps−Att−30)/10

~ωr(0)
, (11)

where ωr(0) denotes the resonant frequency with zero
photons in the resonator, Γ0 and Γ are the external and
total loss rates, respectively, and α is the Duffing fre-
quency shift per photon — recall Eq. (7). Using Eq. (11),
we can fit the extracted resonant frequencies as a func-
tion of input probe power at different flux bias points,
F , with the attenuation, Att, as the only fitting param-
eter (since α can be extracted separately by fitting ωλ/4
and γ0 — recall Eq. (5)). This is shown in Supplemen-
tary Fig. 3, where the data for five different flux bias
points are fitted to attenuations presented in Supplemen-
tary Table 1. From these values, we obtain an average
attenuation, 〈Att〉 = 127.5 dB, which can be compared
with the installed 120 dB, indicating that we have a ca-
ble loss of 7.5 dB at the measurement frequency.

Moreover, from the same measurement we can also ob-
tain an estimate for the gain of the amplifier chain by
assuming that all the signal gets reflected when it is far
off resonance with the resonator i.e. reflection coefficient
|S11|2 = 1. Then, the gain is obtained from the relation

G = |S11|2 +Att. (12)

For the five gain estimates presented in Supplementary
Table 1, we obtain a gain of G = 81.0 ± 0.37 dB, at our
given bias point. The error bars for this gain estimation
has two origins: ±0.17 dB from the residual of the linear
fit to the gain values presented in Supplementary Table
1, and another ±0.2 dB from the gain drift over time,
which can be compared with our 91 dB of installed
amplification.

Calibration of the resonator photon number.
From the obtained calibration of the gain of our ampli-
fier chain, G, we can now calculate the conversion factor
between our measured power on the digitizer and the
number of photons in the resonator, using the following
relation,

|A|2 =
Ps − Pn

2(Γ0/2π)~ω|0〉r 10G/10
, (13)

where Ps and Pn denote our signal and noise power
levels, respectively. We demonstrate this for the bottom
panel of Fig. 3, where the resonator is probed at a

frequency ω
|0〉
r /2π = 5.212 GHz. The external damping

rate is Γ0/2π = 1.02 MHz, and we calculate the back-
ground power level from the end of the trace (when
the pump is off). From the obtained SNR, the number
of added noise photons can be estimated accordingly,
|A|2 /SNR2 = 16.1± 1.3.

Quantum coherence and readout nondestruc-
tiveness. To study how the parametric pump strength
affects the qubits’s relaxation time, we here present
coherence measurements for the transmon. First, we
calibrate a qubit pulse duration corresponding to a
π-pulse, using a Rabi measurement, where the pulse
duration time is swept, for a fixed pulse amplitude.
From the fit in Supplementary Fig. 5(a), a pulse length
of τπ = 52 ns was obtained, and the Rabi decay time was
Trabi = 2.53 ± 0.15µs. The histograms corresponding to
the first 0.5µs are plotted in Supplementary Fig. 5(b),
using the same projective technique as for the histograms
in Fig. 5(c) in the main text. Finally, we perform a set
of T1 measurements for different pump amplitudes ε/Γ,
and compare these with traditional reflection readout,
where we apply a weak resonant probe signal, but no
pump (B(t) 6= 0, ε = 0). The fits to the relaxation times
suggest that our readout is not any more destructive to
the quantum state of the transmon than the traditional
readout technique is. We note, however, that our
extracted relaxation time is limited by the Purcell effect,
yielding T1 ≈ [2Γ0(g01/∆)2]−1 = 4.11µs.
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Supplementary Figure 1. Reflected magnitude of non-degenerate parametric amplification (PA, red trace and left y-axis)
and power of parametric oscillations (PO, blue trace and right y-axis) as a function of pump power across the instability
threshold (dashed line). From the parametric amplification trace, an oscillation threshold, Pth = −10.8 dB was obtained.
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throughout this analysis. (b) Duffing and pump-induced nonlinearities as functions of the magnetic flux bias, F .
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Supplementary Figure 3. Extraction of the non-linear Duffing frequency shift as a function of probe power. The grey solid
lines are fits to Eq. (11), indicating an increased shift as the resonant frequency in Supplementary Fig. 2(a) moves further
down on the tuning curve. For every point, we fit the attenuation of the input line, Att — see Supplementary Table 1.
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Supplementary Figure 4. Schematics, and outcome of qubit population Monte Carlo simulation. (a) Schematics
of the different contributions going into the simulation. The errors are divided into qubit errors and readout errors. (b) The
solid red and blue dots are the histogram bins from Fig. 5(c), here plotted on a logaritmic scale. The solid and dashed black
lines represent the outcome of the simulation of the different error contributions.
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Supplementary Figure 5. Qubit coherence measurements. (a) Rabi oscillations expressed in field amplitude, |A|,
(number of photons)1/2. (b) Histogram representation of the first 0.5µs of the Rabi oscillations measured in (a). (c) Ramsey
free-induction decay time, T ∗

2 , as a function of pulse separation time between two π/2-pulses. (d) T1 relaxation times for
two different effective pump amplitudes, ε/Γ = 3.31 (black) and 1.47 (red), as well as a reference measurement using a weak
resonant probe signal through the coupling capacitor, B(t) 6= 0, (blue). The solid lines are exponential fits, yielding relaxation
times presented in Supplementary Table 3.
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dc-flux bias F/π 0.070 0.164 0.211 0.260 0.309
Attenuation Att -126.9 -127.1 -127.5 -127.8 -127.9 dB
Gain G 80.3 80.6 81.4 81.4 82.0 dB

Supplementary Table 1. Extracted attenuation for the five different dc-flux bias points used for fitting the Duffing nonlin-
earity from Eq. (11) — see Supplementary Fig. 3. The corresponding gain values were obtained from Eq. (12).
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Sec. Error source Comment Fm [%]
(i) Qubit relaxation T1 decay 11.6±0.5

Qubit preparation Combined init. errors 4.5±0.3
(ii) Thermal population Tq = 45±3 mK 1.1±0.4
(iii) Switching events Property of oscillator 1.2±0.3
(iv) Peak separation Histogram overlap <0.002

Total fidelity loss 18.4± 1.5
Measured fidelity Derived from S-curves 81.5
Explained fidelity 99.9± 1.5

Supplementary Table 2. Summary of the error budget analysis, starting out from the state discrimination of 81.5%.
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Readout type Pump amplitude, ε/Γ Relaxation time, T1

JPO (black) 3.31 4.24±0.21µs
JPO (red) 1.47 4.18±0.19µs
Refl. (blue) 0 4.32±0.22µs

Supplementary Table 3. Relaxation times, T1, for two different pump amplitudes as compared with a reflection reference
measurement.
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SUPPLEMENTARY NOTE 1: FIDELITY ERROR BUDGET

In this note, we present an analysis of how we can distinguish between the different sources of the reduction in
measurement fidelity. We calculate the fidelity from the maximum separation of the S-curves of the histogram data,
representing the qubit in the ground and excited states — see Fig. 5(d). To quantify the missing fidelity, we here
present an error budget where we discuss five different sources of fidelity loss. In our system, there are losses that are
due to the qubit and those that are due to the parametric oscillator. The different loss contributions, discussed in
this section, are presented in Supplementary Table 2.

(i) Qubit relaxation and preparation errors

The largest contribution to the reduction of fidelity is associated with the qubit relaxation time, T1 = 4.24±0.21µs.
The time scales for the readout are τπ = 52 ns (π pulse), τd = 20 ns (delay before readout), τr = 300 ns (oscillator rise
time), and τs = 300 ns (sampling time of the parametric oscillator). This means that the pre-sampling time (including
the π-pulse) equals τpre = τπ + τd + τr = 372 ns, which, together with the relaxation during the readout yields a
fidelity loss of 1− exp (−(τpre + τs/2)/T1) = 11.6± 0.5 %. Here, we count only half of the sampling time, τs, since a
qubit decay event occuring during the second half of the sampling time still ends up on the right side of the voltage
threshold, Vth.

Next, to rule out dark or missed counts due to spurious oscillation events as well as non-triggered oscillations,
we performed two separate measurements on the JPO (without involving the qubit) in which statistics of raw data
indicated the absence of both these events. The Monte Carlo simulation outcome yields an upper limit for our qubit
preparation error of 4.5±0.3 %, thus summing up to 11.6±0.5 % + 4.5±0.3 % = 16.1± 0.8 %.

(ii) Thermal population of the qubit

Already from Fig. 5(c) in the main text, we see that the thermal population of the qubit is small. However,
from the ground-state histograms in the logaritmic plot, we can make an estimate of the qubit temperature using
the Boltzmann distribution function, 1/ exp[~ωa/(kBTq)], with a temperature Tq = 45±3 mK, and assuming that the
qubit can only populate its two lowest energy levels. By summing up the counts outside of a voltage threshold of
Vth = ±1.8 mV, we arrive at a 0.55 ± 0.2 % probability of finding the qubit in its excited state. However, since this
will act on both the ground and excited states, it renders a doubled fidelity loss contribution of 1.1±0.4 %.

(iii) Switching events during the readout cycle

Each readout count is obtained, in the digitizer, by averaging the downconverted voltage during the sampling
window of τs = 300 ns; see Fig. 3. There is a certain probability that a π-phase switching event of the parametric
oscillator occurs during this time. Such switching events cause smearing of the histograms towards the center, which
is most pronounced for the blue histogram in Fig. 4 (since it consists mainly of oscillating counts). To investigate
this source of error, we analyzed in more detail the raw data for 103 readout cycles. After disregarding non-oscillating
traces (which represent events of qubit relaxation prior to the readout), we found that 2.4±0.5 % of the oscillating
traces contained switching events. The error bar on the extracted switching rate come from assuming a binominal
distribution of the n = 1000 measurements, and a switching probability p = 2.4 %, yielding a standard deviation,
σ/n =

√
np(1− p)/n ≈ 0.5 %. This translates to a fidelity loss of 1.2±0.25%, since half of the switching events give

rise to the correct measurement outcome regardless of the switching event due to the fact that these still end up
on the correct side of the threshold. This error can, however, be eliminated by implementing a rectifying detection
scheme, using for instance an FPGA — making π and −π indistinguishable.

(iv) Peak separation

To ensure that the peak separation between the histograms is sufficient to fully distinguish between the readout
events, we did a full region map of the fidelity as a function of pump frequency and power, see Fig. 4(b). In
addition, this map serves as a guide for optimizing the readout contrast. The indicated spot shows the bias point
δ|0〉/Γ = −5.34, ε/Γ = 3.56, used throughout this error-budget analysis.
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This bias point is positioned on a plateau of fairly constant fidelities. As we move down in pump strength, the
fidelity is reduced. This can be understood from the reduction of the signal-to-noise ratio, which results in an overlap
between the Gaussian histograms. The same is true for the opposite encoding, found within the right region, where
the populated resonator encodes qubit state |0〉. There, the SNR is insufficient for full state discrimination. At the
bias point used, the pump is sufficiently strong for a negligible probability of non-oscillations, given that the qubit
has been properly initialized. We can extract this overlap by fitting two Gaussians to both oscillating states, and one
Gaussian to the center peak. From these fits, we extract a peak separation error of < 0.002%.
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SUPPLEMENTARY NOTE 2:
PROSPECT TO SURPRESS THE FIDELITY LOSS USING A PURCELL FILTER

From the error budget presented in Supplementary Note 1, we concluded that the largest contribution to the loss
of readout fidelity is associated with the qubit relaxation prior to and during the readout. This error can, however,
be substantially surpressed by implementing a Purcell filter at the JPO output [1–3]. Here we present an estimate for
the expected performance.

A Purcell filter would improve our readout fidelity in two ways: first, the Purcell limitation on the relaxation time
gets extended, and second, the external damping rate can be increased, thus reducing the needed readout time which,
in turn, renders a reduced relaxation prior to the readout.

Let us look at two different values of external damping rates, Γ0/2π, and how an added Purcell filter, centered
around ωr, with a quality factor Qf = 200, changes the Purcell limitation as well as the fidelity loss. For both
examples, we use the same resonator frequency, ωr/2π = 5.212 GHz, qubit transition frequency, ωa/2π = 4.885 GHz,
and qubit-resonator coupling, g01 = 46 MHz, as in the main paper. The Purcell-limited relaxation time is given by

T1 =
1

2Γ0

(
∆

g01

)2

, (1)

which for our presented bias point, ∆/2π = −334 MHz, and external damping, Γ0/2π = 1.02 MHz, results in a
relaxation time, T1 = 4.11µs, see Supplementary Table 4. If we now add the Purcell filter, the effective damping of
the qubit into the 50-Ω load decreases, without compromising the readout time of the resonator, modifying Eq. (1)
to

T f1 =
1

2Γ0

(
∆

g01

)2(
ωr

∆ + ωr

)(
2∆

ωr/Qf

)
, (2)

where the filter bandwidth equals ωr/Qf . In Supplementary Table 4, we compare the fidelity loss due to T1, with and
without an added Purcell filter, for external quality factors Qext = 2554 and 1000.

The conclusion is that the Purcell filter substantially surpresses the fidelity loss well below 1 %, whereas the rise
time of the system can be made shorter than 100 ns for the faster resonator. Finally, if we would use this Purcell
filter, assume a typical transmon relaxation time of T1 = 50µs (limited by other channels of decoherence), and reduce
the pre-sampling time to τpre = τπ + τd + τr = 20 + 0 + 96 = 116 ns, the fidelity loss would be

FL = 1− exp [−(τpre + τs/2)/T1] = 0.53 %. (3)
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Qf Qext Γ0/2π τr = 1/(2Γ0) [ns] T1 [µs] FL [%]
- 2554 1.02 245 4.11 9.21
- 1000 2.6 96 1.60 14.25

200 2554 1.02 245 2841 0.014
200 1000 2.6 96 1112 0.022
200 1000 2.6 96 50a 0.53

a Here, we choose a realistic number for the qubit relaxation time

Supplementary Table 4. Comparison between the readout fidelity losses obtained without and with a Purcell filter with
a quality factor, Qf = 200, for two different external damping rates for the Josephson parametric oscillator. The last row
represents an inferred relaxation time T1 = 50µs, limited by another decoherence channel.
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SUPPLEMENTARY NOTE 3: QUANTUM NON-DEMOLITION

Our measurement protocol is, in principle, quantum nondemolition (QND), since the measurement projection
operator commutes with the Hamiltonian [4]. The joint qubit-resonator system can be described, in the laboratory
frame, by the Jaynes-Cummings Hamiltonian in the dispersive approximation,

Ĥdisp/~ = ωrâ
†â+

α

2

(
â†â
)2 − ωa + χ

2
σ̂z − χσ̂zâ†â, (4)

where â and â† denote the bosonic single-mode annihilation and creation operators, respectively, and σ̂z is a Pauli
matrix. During readout, the qubit state is projected onto its σz (energy) eigenbasis. The measurement (projection)

operator is P̂0/1 = 1
2 (1± σ̂z), which clearly commutes with the Hamiltonian in Eq. (4). This is no different from the

usual measurement principle in circuit-QED with a qubit coupled to a linear resonator [5].
There are two main differences between our JPO readout and conventional dispersive readout: First, our system

has an additional term describing the photon-number dependent, nonlinear Duffing shift, α2 (â†â)2; however, this term
is small due to the weak nonlinearity, α � Γ0, and the dispersive approximation still holds. Second, our resonator
photon number, |A|2 = 185 ± 15, is higher than what is typical for conventional dispersive readout, although it is
similar to the number reported by other groups [1, 6] for systems exhibiting QND character.
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